Demand side management

Utilities and Governments are Wasting Millions of Dollars Subsidizing A Wrong Technology for Motor Systems Efficiency

wasting-money-670x335.jpg

According to the International Energy Agency (IEA), electric motor systems consume more than half of global electricity. Industrial electric motor systems account for over 70% of total global industrial electricity usage. Electric motors operate fans; pumps; and materials-handling, compressed-air, and processing equipment.

Because motor efficiency improvements will only marginally increase the motor system’s efficiency, we must look to improve the efficiency of the equipment and systems being driven by the motor. Optimization measures such as predictive maintenance, avoiding oversized motors, and matching motor systems to specific needs, etc. could improve the energy efficiency of motor-driven systems significantly. Even more savings can be achieved by looking not only beyond the motor to the whole motor system but beyond the system to the end-use device, as shown in Figure below.

Figure. Illustration of two industrial electric motor-driven systems: (a) normal and (b) efficient (IEA 2016)

Figure. Illustration of two industrial electric motor-driven systems: (a) normal and (b) efficient (IEA 2016)

The traditional approach in most states and countries has been to focus on motors only and not on entire motor systems. As shown above, while increasing motor efficiency saves energy, optimizing the entire pump system will save much more energy. There is a need to shift the paradigm to focus on systems rather than individual motor efficiency. Programs and policies that target systems can save more energy and CO2 emissions in a more cost-effective manner than programs that focus only on motors.

Many utilities in the U.S. and governments around the world give substantial rebate for replacing electric motors with more efficient ones. While this may sound like a good thing to do, our extensive studies for 30 states in the U.S. and over 10 countries around the world shows that it is a clear waste of money. Why? Because in most cases, replacing existing motor with a more efficient one can improve the entire system efficiency by 1% - 5% (depending on the baseline efficiency of the systems). On the other hand, there are many other systems efficiency/optimization measures that can result in up to 20% - 25% efficiency improvement in the system.

pump-1758554_1920.jpg

For example, in a pump system with a Low efficiency baseline, replacing motor can only improve system efficiency by 5%, while trimming or changing impeller to match output to requirements can save about 15%, removing sediment/scale buildup from piping can save about 10% and installing variable speed drive (VSD) can save about 25% of the electricity use.

There is another very important reason why giving rebate for replacing motors with more efficient ones is such a waste of money in a massive scale. Our analysis consistently showed that replacing motor with more efficient one is by far one of the least cost-effective efficiency measures that can be implement on a motor system (for example in a pump systems or a fan systems). In other words, it cost much higher to save a kWh of electricity by replacing motor than to implement other system efficiency/optimization measures.

So, you might ask why many utilities and government prioritize giving rebate for replacing motors? The answer is it’s easier to implement and measure the saving. Utilities and government staff and program managers often need to show the amount of electricity saved as a result of implementing a rebate program. This is easier to do with equipment replacement than with soft measures such as system optimization. Having this said, many of the system optimization measures are easy to implement by in-house staff in the facilities.

To sum up, our detailed and extensive studies for three major industrial motor systems (pump systems, fan systems, and compressor systems) shows that millions of dollars spent annually by utilities and governments on rebate program for replacing electric motors with more efficient one is clearly waste of public and private funding. The better way would be to provide rebate for system efficiency measures that can save sometime up to 10 times higher energy saving with lower cost.

If utilities and governments persist to keep their motor replacement rebate program, my suggestion to them, based on the findings of our reports, is to bundle one or two efficiency measures with the motor replacement rebate. In other words, for an applicant to quality for motor replacement rebate, they should also implement one or two other system optimization measures from a list of measures that is predefined by utilities or government agencies.

To find out more about our detailed bottom-up studies for energy efficiency in industrial motor systems in the U.S., see our reports:

U.S. Industrial Motor Systems Energy Efficiency Reports Covering 30 States >>

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

References:

IEA. 2016. World Energy Outlook 2016. Paris, France.
IEA, 2011. Energy efficiency policy opportunities for electric motor driven systems. Paris, France.


Global Efficiency Intelligence and UNIDO are Helping Egypt to Improve Industrial Energy Efficiency

pyramids-2159286_1280.jpg

Egypt is the largest oil and natural gas consumer in Africa, accounting for about 20% of petroleum and other liquids consumption and around 40% of natural gas consumption in Africa. Increased industrial output, economic growth, energy-intensive natural gas and oil extraction industry, rapid population growth, rapid increase in vehicle sales, and energy subsidies are among key factors contributed to the rapid growth of energy consumption over the past few decades in Egypt.

Industry sector accounted for over 42% of natural gas, 86% of fuel oil, and 25% of total electricity consumption in Egypt in 2015. industrial electric motor systems account for over 70% of manufacturing electricity consumption.

Given its extensive experience on motor systems energy efficiency analysis, Global Efficiency Intelligence, LLC. has been working on a project for United Nations Industrial Development Organization (UNIDO) to conduct a study on electricity saving potential in industrial motor systems in Egypt. We are analyzing energy use, energy efficiency, and GHG emissions-reduction potential in industrial pump systems, fan systems, and compressed-air systems, which together account for over 70% of electricity use in industrial motor systems in Egypt. We will assess the cost-effectiveness of series of energy conservation measures that can be implemented on these motor systems in Egypt.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.


Infographic: Textile and Apparel Industry’s Energy and Water Consumption and Pollutions Profile

post-impressionist-1428139_1280.jpg

Although the textile and apparel industry is not considered an energy-intensive industry, it comprises a large number of plants that, together, consume a significant amount of energy which result in substantial greenhouse gas (GHG) emissions too. 



The textile and apparel industry and especially textile wet-processing is one of the largest consumers of water in manufacturing and also one of the main producers of industrial wastewater. Since various chemicals are used in different textile processes like pre-treatment, dyeing, printing, and finishing, the textile wastewater contains many toxic chemicals which if not treated properly before discharging to the environment, can cause serious environmental damage.

With global population growth and the emergence of fast fashion, the worldwide textile and apparel production are increasing rapidly. In 2014, an average consumer bought 60% more clothing compared to that in 2000, but kept each garment only half as long.

The Infographic below shows the Textile and Clothing Industry’s Energy and Water Consumption and Pollutions Profile.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications. Also see below our related publications and tools.

Textile infograph.jpg

Some of our related publications and tools are:

1.     Hasanbeigi, Ali; Price, Lynn; (2015). A Technical Review of Emerging Technologies for Energy and Water Efficiency and Pollution Reduction in the Textile Industry. Journal of Cleaner Production. 

2.   Hasanbeigi, Ali (2013). Emerging Technologies for an Energy-Efficient, Water-Efficient, and Low-Pollution Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-6510E

3.     Hasanbeigi, Ali; Hasanabadi, Abdollah; Abdolrazaghi, Mohamad, (2012). Energy Intensity Analysis for Five Major Sub-Sectors of the Textile Industry. Journal of Cleaner Production 23 (2012) 186-194

4.     Hasanbeigi, Ali; Price, Lynn (2012). A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry. Renewable and Sustainable Energy Reviews 16 (2012) 3648– 3665.

5.    Also, you can check out the Energy Efficiency Assessment and Greenhouse Gas Emission Reduction Tool for the Textile Industry (EAGER Textile), which I developed a few years ago while still working at LBNL. EAGER Textile tool allows users to conduct a simple techno-economic analysis to evaluate the impact of selected energy efficiency measures in a textile plant by choosing the measures that they would likely introduce in a facility, or would like to evaluate for potential use.


Available Now: Reports on Electricity Saving Potentials in U.S. Industrial Motor Systems

demand response.jpg

In the U.S., industrial electric motor systems account for over 70% of manufacturing electricity consumption. Motors are used to drive pumps, fans, compressed air systems, material handling, processing systems and more. Industrial motor systems represent a largely untapped cost-effective source for industrial energy efficiency savings that could be realized with existing commercialized technologies. A major barrier to effective policy making for government and utilities in the U.S. related to energy efficiency improvement in industrial motor systems is the lack of information and data on the magnitude and cost-effectiveness of these energy savings potential in each state in the U.S. and a comprehensive strategy and roadmap.

Global Efficiency Intelligence, LLC has been working on an initiative to study and analyze the industrial motor systems in different states in the United States. We have 30 States from different regions in the U.S. that are included in this initiative. All top 20 U.S. states in terms of industrial energy consumption are included in this initiative. We work with various public and private stakeholders on this project. This initiative focuses on industrial pumps, fans, and compressed air systems which together account for over 80% of electricity use in industrial motor systems in the U.S. We conduct various analyses at the state-level such as analyzing the energy use by each motor system type and system size at manufacturing subsector level (e.g. chemical, food, textile, steel, machinery, pulp and paper, etc.), analyzing energy saving potentials and cost by technology and system size for each state, analyzing barriers and drivers to energy efficiency and system optimization in industrial motor systems in each state, and analyzing policy making and market implications for each state.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Infographic: Energy Use and Emissions in the Cement Industry

The cement industry is one of the most energy-intensive and highest CO2 emitting industries and one of the key industrial contributors to air pollutions (PM, SO­2, etc.) in the world. The inforgraphic below is prepared by Global Efficiency Intelligence, LLC to summarize some key information on energy use and emissions in the cement industry.

Global Efficiency Intelligence, LLC has experience conducting various projects and studies on energy efficiency, GHG and other emissions reduction, energy benchmarking, and alternative fuel use in the cement industry in China, India, U.S., Southeast Asia, and the Middle East.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.


Some of our related publications are:

  • Hasanbeigi, Ali; Nina Khanna, Price, Lynn (2017). Air Pollutant Emissions Projection for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies. Berkeley, CA: Lawrence Berkeley National Laboratory. 1007268

  • Hasanbeigi, Ali; Agnes Lobscheid; Hongyou, Lu; Price, Lynn; Yue Dai (2013). Quantifying the Co-benefits of Energy-Efficiency Programs: A Case-study for the Cement Industry in Shandong Province, China. Science of the Total Environment. Volumes 458–460, 1 August 2013, Pages 624-636.

  • Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang. 2013. Energy Efficiency Improvement Opportunities in the Cement Industry in China. Energy Policy Volume 57, June 2013, Pages 287–297

  • Hasanbeigi, Ali; Price, Lynn; Lin, Elina. (2012). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for Cement and Concrete  Production. Berkeley, CA: Lawrence Berkeley National Laboratory LBNL-5434E.

  • Morrow, William; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang. 2014. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India’s Cement and Iron & Steel Industries. Journal of Cleaner Production. Volume 65, 15 February 2014, Pages 131–141

  • Hasanbeigi, Ali; Menke, Christoph; Therdyothin, Apichit (2010). Technical and Cost Assessment of Energy Efficiency Improvement and Greenhouse Gas Emissions Reduction Potentials in Thai Cement Industry. Energy Efficiency. DOI 10.1007/s12053-010-9079-1

  • Hasanbeigi, Ali; Menke, Christoph; Therdyothin, Apichit (2010). The Use of Conservation Supply Curves in Energy Policy and Economic Analysis: the Case Study of Thai Cement Industry. Energy Policy 38 (2010) 392–405

  • Hasanbeigi, Ali; Price, Lynn; Hongyou, Lu; Lan, Wang (2010). Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China: A Case-Study of Sixteen Cement Plants. Energy-the International Journal 35 (2010) 3461-3473.


36 Emerging Technologies for Energy-efficiency and GHG Emissions Reduction in the Pulp and Paper Industry

The pulp and paper industry accounted for approximately 5 percent of total industrial final energy consumption and 2 percent of direct carbon dioxide (CO2) emissions from the industrial sector worldwide (IEA 2011). (Note: Direct CO2 emissions are emissions from fossil fuel use and chemical reactions produced onsite and do not include emissions associated with purchased steam and electricity.) World paper and paperboard demand and production are increasing; annual production is expected to grow from approximately 365 million tonnes (Mt) in 2006 to between 700 Mt (low estimate) and 900 Mt (high estimate) in 2050. The largest share of this growth will take place in China, India, and other developing countries (see Figure below). This significant increase in paper production will cause a corresponding significant increase in the pulp and paper industry’s absolute energy consumption and greenhouse gas (GHG) emissions.

Note: OECD is an acronym for the Organization for Economic Co-operation and DevelopmentFigure 1. Annual world paper and paperboard production (IEA 2009)

Note: OECD is an acronym for the Organization for Economic Co-operation and Development

Figure 1. Annual world paper and paperboard production (IEA 2009)

Studies have documented the potential to save energy by implementing commercially-available energy-efficiency technologies and measures in the pulp and paper industry worldwide. However, today, given the projected continuing increase in absolute paper production, future reductions (e.g., by 2030 or 2050) in absolute energy use and CO2 emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for paper production or technologies that can economically capture and store the industry’s CO2 emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the pulp and paper industry’s mid- and long-term climate change mitigation strategies.

Many studies from around the world have identified sector-specific and cross- energy-efficiency technologies for the pulp and paper industry that have already been commercialized (See figure below). However, information is scarce and scattered regarding emerging or advanced energy-efficiency and low-carbon technologies for the pulp and paper industry that have not yet been commercialized.

Figure: Commercialized energy efficiency technologies and measures for pulp and paper industry (Source: IIP, 2012)

Figure: Commercialized energy efficiency technologies and measures for pulp and paper industry (Source: IIP, 2012)

My colleagues at Lawrence Berkeley National Laboratory and I wrote a report that consolidated available information on emerging technologies for the pulp and paper industry with the goal of giving engineers, researchers, investors, paper companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic.

The information about the 36 emerging technologies for the pulp and paper industry was covered in the report and was presented using a standard structure for each technology. Table below shows the list of the technologies covered.

Table. Emerging energy-efficiency and CO2 emissions-reduction technologies for the pulp and paper industry (Kong and Hasanbeigi, et al. 2013 and 2015)

Shifting away from conventional processes and products will require a number of developments including: education of producers and consumers; new standards; aggressive research and development to address the issues and barriers confronting emerging technologies; government support and funding for development and deployment of emerging technologies; rules to address the intellectual property issues related to dissemination of new technologies; and financial incentives (e.g. through carbon trading mechanisms) to make emerging low-carbon technologies, which might have a higher initial costs, competitive with the conventional processes and products.

Our report is published on LBNL’s website and can be downloaded from this Link. Please feel free to contact me if you have any question.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

  1. Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn, Huanbin Liu (2015). Energy conservation and CO2 mitigation potentials in the Chinese pulp and paper industry. Resource Conservation and Recycling (Accepted- In Press. Available online 29 May 2015).

  2. Kong, Lingbo; Price, Lynn; Hasanbeigi, Ali; Liu, Huanbin; Li, Jigeng. (2013) Potential for Reducing Paper Mill Energy Use and Carbon Dioxide Emissions through Plant-wide Energy Audits: A Case Study in China. Applied Energy, Volume 102, February 2013, Pages 1334–1342

  3. Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn, Huanbin Liu (2013). Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-6107E

References:

  • Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn (2015). Assessment of emerging energy-efficiency technologies for the pulp and paper industry: A technical review. Journal of Cleaner Production. Volume 122, 20 May 2016, Pages 5–28

  • Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn (2013). Emerging Energy Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-5956E.

  • Institute for Industrial Productivity, 2012. Pulp and paper energy efficiency technologies.

  • International Energy Agency (IEA). 2011. Energy Transition for Industry: India and the Global Context. Paris, France.

  • International Energy Agency (IEA). 2009. Energy Technology Transitions for Industry - Strategies for the Next Industrial Revolution. Paris, France.


Infographic: The Profile of Energy Use in Industrial Motor Systems

According to International Energy Agency, around half of the electricity used globally is consumed in electric motor systems. Industrial motor systems account for around 70% of manufacturing electricity consumption in different countries. The inforgraphic below is prepared by Global Efficiency Intelligence, LLC to summarize some key information on energy use in motor systems worldwide.

Global Efficiency Intelligence, LLC is working on Global Motor Systems Efficiency Initiative and the U.S. Motor Systems Efficiency Initiative (covers 30 states in the U.S.) to analyze the energy use in industrial motor systems and energy efficiency potentials in these systems at manufacturing subsectors level in different countries or states in the U.S. For more information, click on the links above to see our projects page.

Available Now: U.S. Industrial Motor Systems Energy Efficiency Reports >>

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

18 Emerging Technologies and 180 Commercialized Technologies and Measures for Energy and Water Efficiency, and GHG Emissions Reduction in the Textile Industry

The textile industry uses large amounts of electricity, fuel, and water, with corresponding greenhouse gas emissions (GHGs) and contaminated effluent.  With regard to energy use, the textile industry’s share of fuel and electricity use within the total final energy use of any one country depends on the structure of the textile industry in that country. For instance, electricity is the dominant energy source for yarn spinning whereas fuels are the major energy source for textile wet processing.

In addition to using substantial energy, textile manufacturing uses a large amount of water, particularly for wet processing of materials, and produces a significant volume of contaminated effluent. Conserving water and mitigating water pollution will also be part of the industry’s strategy to make its production processes more environmentally friendly, particularly in parts of the world where water is scarce.

In 2016, the world’s population was 7.4 billion; this number is expected to grow to 9.5 billion by 2050. The bulk of this growth will take place in underdeveloped and developing countries. As the economy in these countries improves, residents will have more purchasing power; as a result, per-capita consumption of goods, including textiles, will increase. In short, future population and economic growth will stimulate rapid increases in textile production and consumption, which, in turn, will drive significant increases in the textile industry’s absolute energy use, water use, and carbon dioxide (CO2) and other environmentally harmful emissions.

Having the higher education background in both textile technology engineering and energy efficiency technologies, I wrote a report on commercially available energy-efficiency technologies and measures for the textile industry several years ago. This report included a review of over 180 commercialized energy efficiency technologies and measures for the textile industry based on case-studies around the world. In addition to conserving energy, some of the technologies and measures presented also conserve water. The report can be downloaded from this Link (Hasanbeigi 2010).

Several other reports also document the application of commercialized technologies. However, today, given the projected continuing increase in absolute textile production, future reductions (e.g., by 2030 or 2050) in absolute energy use and CO2 emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for textile production or technologies that can economically capture and store the industry’s CO2 emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the textile industry’s mid- and long-term climate change mitigation strategies.

However, information is scarce and scattered regarding emerging or advanced energy-efficiency and low-carbon technologies for the textile industry that have not yet been commercialized. That was why a few years ago, I wrote another report that consolidated available information on 18 emerging technologies for the textile industry with the goal of giving engineers, researchers, investors, textile companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic. Table below shows the list of the technologies covered.

Table. Emerging energy-efficiency, water efficiency, and GHG emissions reduction technologies for the textile industry (Hasanbeigi 2015)

A few years ago when I conducted several day-long training on energy efficiency in the textile industry for hundreds of engineers and manager of textile companies in China, one major feedback we received, which did not surprise me, was that they did not know about most of the commercialized and emerging technologies we introduced. Engineers and manager are busy with day-to-day routine which rarely involves energy efficiency improvement.  

Also, you can check out the Energy Efficiency Assessment and Greenhouse Gas Emission Reduction Tool for the Textile Industry (EAGER Textile), which we developed a few years ago. EAGER Textile tool allows users to conduct a simple techno-economic analysis to evaluate the impact of selected energy efficiency measures in a textile plant by choosing the measures that they would likely introduce in a facility, or would like to evaluate for potential use.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

1.     Hasanbeigi, Ali; Price, Lynn; (2015). A Technical Review of Emerging Technologies for Energy and Water Efficiency and Pollution Reduction in the Textile Industry. Journal of Cleaner Production. DOI 10.1016/j.jclepro.2015.02.079.

2.     Hasanbeigi, Ali; Hasanabadi, Abdollah; Abdolrazaghi, Mohamad, (2012). Energy Intensity Analysis for Five Major Sub-Sectors of the Textile Industry. Journal of Cleaner Production 23 (2012) 186-194

3.     Hasanbeigi, Ali; Price, Lynn (2012). A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry. Renewable and Sustainable Energy Reviews 16 (2012) 3648– 3665.

References:

·      Hasanbeigi, Ali (2013). Emerging Technologies for an Energy-Efficient, Water-Efficient, and Low-Pollution Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-6510E

·      Hasanbeigi, Ali, (2010). Energy Efficiency Improvement Opportunities for the Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-3970E


56 Emerging Technologies for Energy-efficiency and GHG Emissions Reduction in the Iron and Steel Industry

Iron and steel manufacturing is one of the most energy-intensive industries worldwide. In addition, use of coal as the primary fuel for iron and steel production means that iron and steel production has among the highest carbon dioxide (CO2) emissions of any industry. According to the International Energy Agency, the iron and steel industry accounts for the largest share – approximately 27 percent – of CO2 emissions from the global manufacturing sector.

Figure 1: World steel production in 2015 by countries and regions (worldsteel 2016)

Figure 1: World steel production in 2015 by countries and regions (worldsteel 2016)

China accounts for around half of the world’s steel production. Annual world steel demand is expected to grow from approximately 1,410 million tonnes (Mt) of crude steel in 2010 to approximately 2,200 Mt in 2050. The bulk of this growth will take place in China, India, and other developing countries in Asia (Bellevrat and Menanteau 2008). This significant increase in steel consumption and production will drive a significant increase in the industry’s absolute energy use and CO2 emissions.

Studies have documented the potential to save energy by implementing commercially-available energy-efficiency technologies and measures in the iron and steel industry worldwide. However, today, given the projected continuing increase in absolute steel production, future reductions (e.g., by 2030 or 2050) in absolute energy use and CO2 emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for steel production or technologies that can economically capture and store the industry’s CO2 emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the iron and steel industry’s mid- and long-term climate change mitigation strategies.

Many studies from around the world have identified sector-specific and cross- energy-efficiency technologies for the iron and steel industry that have already been commercialized (See figure below). However, information is scarce and scattered regarding emerging or advanced energy-efficiency and low-carbon technologies for the steel industry that have not yet been commercialized.

Figure 2: Commercialized energy efficiency technologies and measures for iron and steel industry (Source: IIP, 2012)

Figure 2: Commercialized energy efficiency technologies and measures for iron and steel industry (Source: IIP, 2012)

My colleagues at Lawrence Berkeley National Laboratory and I wrote a report that consolidated available information on emerging technologies for the iron and steel industry with the goal of giving engineers, researchers, investors, steel companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic.

The information about the 56 emerging technologies for the steel industry was covered in the report and was presented using a standard structure for each technology. Table below shows the list of the technologies covered.

Table 1. Emerging energy-efficiency and CO2 emissions-reduction technologies for the iron and steel industry (Hasanbeigi et al. 2013)

Shifting away from conventional processes and products will require a number of developments including: education of producers and consumers; new standards; aggressive research and development to address the issues and barriers confronting emerging technologies; government support and funding for development and deployment of emerging technologies; rules to address the intellectual property issues related to dissemination of new technologies; and financial incentives (e.g. through carbon trading mechanisms) to make emerging low-carbon technologies, which might have a higher initial costs, competitive with the conventional processes and products.

Our report is published on LBNL’s website and can be downloaded from this Link. Please feel free to contact me if you have any question.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

  1. Hasanbeigi, Ali; Arens, Marlene; Rojas-Cardenas, Jose; Price, Lynn; Triolo, Ryan. (2016). Comparison of Carbon Dioxide Emissions Intensity of Steel Industry in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling. Volume 113, October 2016, Pages 127–139

  2. Zhang, Qi; Hasanbeigi, Ali; Price, Lynn; Lu, Hongyou; Arens, Marlen (2016). A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL- 1006356

  3. Morrow, William; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang. 2014. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India’s Cement and Iron & Steel Industries. Journal of Cleaner Production. Volume 65, 15 February 2014, Pages 131–141

  4. Hasanbeigi, Ali; Price, Lynn, Aden, Nathaniel; Zhang Chunxia; Li Xiuping; Shangguan Fangqin. 2014. Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Journal of Cleaner Production, Volume 65, 15 February 2014, Pages 108–119

  5. Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang. (2013). A Bottom-Up Model to Estimate the Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Chinese Iron and Steel Industry. Energy, Volume 50, 1 February 2013, Pages 315-325

  6. Hasanbeigi, A., Price, L., Aden, N., Zhang C., Li X., Shangguan F. 2011. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Berkeley CA: Lawrence Berkeley National Laboratory Report LBNL-4836E.

References:

  • Bellevrat, E., P. Menanteau. 2008. “Introducing carbon constraint in the steel sector: ULCOS scenarios and economic modeling.” Proceedings of the 4th Ulcos seminar, 1-2 October.

  • Hasanbeigi, Ali; Arens, Marlene; Price, Lynn; (2013). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Iron and Steel Industry. Berkeley, CA: Lawrence Berkeley National Laboratory BNL-6106E.

  • Institute for Industrial Productivity. 2012. Iron and Steel technologies http://ietd.iipnetwork.org/content/iron-and-steel

  • worldsteel Association. 2016. World steel in figures.


19 Emerging Technologies for Energy-efficiency and GHG Emissions Reduction in the Cement and Concrete Industry

cement.jpg

The cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO2) emissions worldwide (WBCSD/IEA 2009a). World cement demand and production are increasing; annual world cement production is expected to grow from approximately 4,100 million tonnes (Mt) in 2015 to around 4,800 Mt in 2030 and grow even further after that. The largest share of this growth will take place in developing countries, especially in the Asian continent. This significant increase in cement production is associated with a significant increase in the cement industry’s absolute energy use and greenhouse gas (GHG) emissions..

Figure 1. Global cement production from 1990 to 2030

Figure 1. Global cement production from 1990 to 2030

Studies have documented the potential to save energy by implementing commercially-available energy-efficiency technologies and measures in the cement industry worldwide. However, today, given the projected continuing increase in absolute cement production, future reductions (e.g., by 2030 or 2050) in absolute energy use and CO2 emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for cement production or technologies that can economically capture and store the industry’s CO2 emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the cement industry’s mid- and long-term climate change mitigation strategies.

Many studies from around the world have identified commercialized sector-specific and cross- energy-efficiency technologies for the cement industry that have already been (See figure below).

Figure 2. Commercialized energy efficiency technologies and measures for cement production process (Source: IIP, 2017)

Figure 2. Commercialized energy efficiency technologies and measures for cement production process (Source: IIP, 2017)

However, information is scarce and scattered regarding emerging energy-efficiency and low-carbon technologies for the cement industry that have not yet been commercialized.

A few years ago, while I was working at Lawrence Berkeley National Laboratory, my colleagues and I wrote a report that consolidated available information on emerging technologies for the cement industry with the goal of giving engineers, researchers, investors, cement companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic.

The information about the 19 emerging technologies covered in the report and was presented using a standard structure for each technology. Table below shows the list of the technologies covered.

Table 1. Emerging energy-efficiency and CO2 emissions-reduction technologies for cement and concrete production (Hasanbeigi et al. 2012)

Table 1. Emerging energy-efficiency and CO2 emissions-reduction technologies for cement and concrete production (Hasanbeigi et al. 2012)

Shifting away from conventional processes and products will require a number of developments including: education of producers and consumers; new standards; aggressive research and development to address the issues and barriers confronting emerging technologies; government support and funding for development and deployment of emerging technologies; rules to address the intellectual property issues related to dissemination of new technologies; and financial incentives (e.g. through carbon trading mechanisms) to make emerging low-carbon technologies, which might have a higher initial costs, competitive with the conventional processes and products.

Our report is published on LBNL’s website and can be downloaded from this Link. Please feel free to contact me if you have any question. Don't forget to follow us on LinkedInFacebook, and Twitter to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

  • Hasanbeigi, Ali; Agnes Lobscheid; Hongyou, Lu; Price, Lynn; Yue Dai (2013). Quantifying the Co-benefits of Energy-Efficiency Programs: A Case-study for the Cement Industry in Shandong Province, China. Science of the Total Environment. Volumes 458–460, 1 August 2013, Pages 624-636.

  • Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang. 2013. Energy Efficiency Improvement Opportunities in the Cement Industry in China. Energy Policy Volume 57, June 2013, Pages 287–297

  • Morrow, William; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang. 2014. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India’s Cement and Iron & Steel Industries. Journal of Cleaner Production. Volume 65, 15 February 2014, Pages 131–141

  • Hasanbeigi, Ali; Menke, Christoph; Therdyothin, Apichit (2010). Technical and Cost Assessment of Energy Efficiency Improvement and Greenhouse Gas Emissions Reduction Potentials in Thai Cement Industry. Energy Efficiency. DOI 10.1007/s12053-010-9079-1

  • Hasanbeigi, Ali; Menke, Christoph; Therdyothin, Apichit (2010). The Use of Conservation Supply Curves in Energy Policy and Economic Analysis: the Case Study of Thai Cement Industry. Energy Policy 38 (2010) 392–405

  • Hasanbeigi, Ali; Price, Lynn; Hongyou, Lu; Lan, Wang (2010). Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China: A Case-Study of Sixteen Cement Plants. Energy-the International Journal 35 (2010) 3461-3473.

 

References:

Hasanbeigi, Ali; Price, Lynn; Lin, Elina. (2012). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for Cement and Concrete  Production. Berkeley, CA: Lawrence Berkeley National Laboratory LBNL-5434E.

Institute for Industrial Productivity, 2012. Cement energy efficiency technologies.

World Business Council for Sustainable Development (WBCSD)/International Energy Agency (IEA). 2009a. Cement Technology Roadmap 2009 - Carbon emissions reductions up to 2050.

World Business Council for Sustainable Development (WBCSD)/International Energy Agency (IEA). 2009b. Cement roadmap targets.


Utilities large missed opportunity: Demand Response in manufacturing

Demand Response (DR) helps utilities to manage the peak electricity demand by temporarily shifting the demand on the consumer side instead of building new power plants to meet the short-time peak demand. On the other hand, customers use demand response to reduce their electrical cost using the time-of-use price signals. Nowadays, work is underway to automate the process using automated demand response (AutoDR).

In this post I will not get into the details of DR or AutoDR and rather discuss the DR potential in the manufacturing sector. I believe one of the main barriers to DR in manufacturing is that the DR potential in this sector is not well understood by utilities, companies and other parties involved.

Based on my experience on energy efficiency and demand side management in industry in the past 10 years, for a manufacturing sector or process to have a great potential for Demand Response (DR), it should have one or more of the four characteristics shown in the figure below.

Note: A bottleneck is a stage in a process that causes the entire process and the production rate of the final product to slow down.

Let me open this by giving a few examples below from an energy-intensive industry (cement industry) and a non-energy-intensive industry (textile industry).

Example 1- DR potential in the cement industry:

In a simple form, cement production process consists of raw material (mostly limestone) grinding, high temperature kiln for clinker making, and finish grinding of clinker and some additives into cement.

The electricity use in a cement plant ranges between 90 to 150 kWh/tonne cement depending on the grinding technology, raw material properties, etc. A cement plant may have a production capacity of less than 1000 tonne per day to more than 10,000 tonne per day. Therefore, the amount of electricity use by a cement plant can be quite substantial. Over 70% of the electricity use in cement plant is used in raw material grinding and finish grinding processes.

The raw material grinding process has the following three DR-friendly characteristics:

  1. It is a batch process

  2. It has large storage capacity for its output (ground raw material) which last for hours and often for days

  3. The following process (which is kiln) can be considered a bottleneck of the production. This combined with large storage capacity before the bottleneck process (#2) provides a perfect condition for DR.

The finish grinding process has the following three DR-friendly characteristics:

  1. It is a batch process

  2. There is a large storage capacity after kiln for ground clinker (and before finish grinding), which last for hours if not days.

  3. If production scheduling is flexible, the operation of finish grinding to produce the final cement product can be delayed for a few hours while the previous process can continue their operation.

If we assume that an exemplary cement plant uses 120 kWh/tonne cement of which 70% (84 kWh/tonne cement) used in raw material grinding and finish grinding, and produces 3000 tonne cement pre day (125 tonne/hour), every hour of shift in the operation of both raw material grinding and finish grinding in response to a DR signal will result in 125*84=10,500 kWh reduction in electricity demand.

This is roughly equal to average daily electricity consumption of 350 U.S. residential utility customers. If only the production of either raw material grinding or finish grinding is shifted, this reduction will be cut by almost half. This is such a large DR potential that I am going to hope all utilities and cement companies are taking advantage of it.

Example 2- DR potential in the textile industry:

There are many DR potential in the textile industry. I have done substantial work on this sector and can talk for hours on EE and DR potential in different textile subsectors and process. However, since this post is getting a bit longer than I planned, I will just briefly mention two DR potentials for this industry. If you like to know more, feel free to contact me.

The first example for the textile industry is in the yarn production process. One of the main process is called “spinning process” which uses different machines such as Ring frame, Open-end machines, etc. The spinning process has the following two DR-friendly characteristics:

  1. It is a batch process

  2. It is a bottleneck process. Often, intermediary products that are fed into spinning machines get lined up for hours on the plant floor waiting to be processed by spinning machines. Having a proper storage capacity will allow to store enough feeding product for spinning machines and shut down the previous process, which account for around 30%-40% of electricity demand of the entire yarn production plants, for few hours during the DR period.

Another significant potential for DR in the textile industry is in wet-processing plants. Wet-processing plants conduct preparation, dyeing, printing, and/or finishing of yarn and fabric and other textile products. Many batch processes exist in wet-processing plants. Also, several processes like dryer, Stenter, or batch dyeing machines can be bottleneck processes that provide DR opportunity. Often wet-processing plants work on several different orders and products; thus, proper production scheduling can provide great DR opportunity. To take advantage of this, there needs to be high level of coordination between different departments within a plant who are in charge of production planning, energy management, paying utility bills, etc. Figure below illustrate the concept of DR potential in production processes with batch processing, storage capacity and a bottleneck process.

To sum up, manufacturing sector is a complex and heterogeneous sector. Even within one industry subsector (for example, textile or food industry), there are completely different subsectors. However, there are great potentials for energy saving and Demand Response in the manufacturing sector. More in-depth understanding of production processes and technologies and energy systems in each manufacturing subsector will allow us to tap into these potential. 

Please feel free to contact me if you have any question. Also, don't forget to follow us on LinkedInFacebook, and Twitter to get the latest about our new blog posts, projects, and publications.