Power

Aluminum Industry: 10 Emerging Technologies for Energy-efficiency and GHG Emissions Reduction

foil-782.jpg

Aluminum production is one of the most energy-intensive industrial processes worldwide. Although about a third of global aluminum production uses electricity from hydropower sources, the increasing use of coal as the primary fuel for electricity for aluminum production in many countries means that aluminum production is still a significant source of greenhouse gas (GHG) and greenhouse gas  emissions. According to the International Energy Agency (IEA), the aluminum industry accounts for about 1% of global GHG emissions (IEA 2012).

Annual world aluminum demand is expected to increase two- to three-fold by 2050. The bulk of growth in consumption of aluminum will take place in China, India, the Middle East, and other developing countries, where consumption is expected to nearly quadruple by 2025. To meet this increased demand, production is projected to grow from approximately 51 million tonnes (Mt) of primary aluminum in 2014 to 89-122 Mt in 2050 (IEA 2012). This increase in aluminum consumption and production will drive significant growth in the industry’s absolute energy use and GHG emissions.

Studies have documented the potential to save energy by implementing commercially-available energy-efficiency technologies and measures in the aluminum industry worldwide. However, today, given the projected continuing increase in absolute aluminum production, future reductions (e.g., by 2030 or 2050) in absolute energy use and GHG emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for aluminum production or technologies that can economically capture and store the industry’s GHG emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the aluminum industry’s mid- and long-term climate change mitigation strategies.

Many studies from around the world have identified sector-specific and cross- energy-efficiency technologies for the aluminum industry that have already been commercialized. However, information is scarce and scattered regarding emerging or advanced energy-efficiency and low-carbon technologies for the aluminum industry that have not yet been commercialized.

In 2016, Cecilia Springer of Lawrence Berkeley National Laboratory and I wrote a report that consolidated available information on emerging technologies for the aluminum industry with the goal of giving engineers, researchers, investors, aluminum companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic.

Information about 10 emerging technologies for the aluminum industry was covered in the report and was presented using a standard structure for each technology. Table below shows the list of the technologies covered.

Table 1. Emerging energy-efficiency and CO2 emissions-reduction technologies for the aluminum industry (Springer and Hasanbeigi, 2016)

Picture2.png

Shifting away from conventional processes and products will require a number of developments including: education of producers and consumers; new standards; aggressive research and development to address the issues and barriers confronting emerging technologies; government support and funding for development and deployment of emerging technologies; rules to address the intellectual property issues related to dissemination of new technologies; and financial incentives (e.g. through carbon trading mechanisms) to make emerging low-carbon technologies, which might have a higher initial costs, competitive with the conventional processes and products.

Our report is published on LBNL’s website and can be downloaded from this Link. Please feel free to contact me if you have any question.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

1.     Hasanbeigi, Ali (2013). Emerging Technologies for an Energy-Efficient, Water-Efficient, and Low-Pollution Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-6510E

2.     Hasanbeigi, Ali; Arens, Marlene; Price, Lynn; (2013). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Iron and Steel Industry. Berkeley, CA: Lawrence Berkeley National Laboratory BNL-6106E.

3.     Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn (2012). Emerging Energy Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-5956E.

4.     Hasanbeigi, Ali; Price, Lynn; Lin, Elina. (2012). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for Cement and Concrete  Production. Berkeley, CA: Lawrence Berkeley National Laboratory LBNL-5434E.

References:

Springer, Cecilia; Hasanbeigi, Ali and Price, Lynn (2016). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Aluminum Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-1005789

·      International Energy Agency, and Organisation de coopération et de développement économiques. 2012. Energy Technology Perspectives: Scenarios & Strategies to 2050 : In Support of the G8 Plan of Action. Paris: OECD, IEA.


Hurricanes Maria, Irma, Harvey: How to Keep out the Flood Water by Pumping Less

storm-407963_1280.jpg

First, I should say that my heart goes to all people who are affected by Hurricane Maria, Hurricane Irma, and Hurricane Harvey in Texas, Louisiana, Florida, Puerto Rico, and all islands in the Caribbean. At times like this, we shall all come together to help the people in need.

 

Whether or not we like it or believe in it, climate change is causing global warming. That in term is causing an increase in severe weather and natural disasters. We are all witnessing the worst in a century hurricanes, tropical storms, flooding, and droughts all over the world. This is not a coincident. Scientists have been yelling and warning us about this for years now. It’s time to listen and act before it is too late. According to NASA, storms feed off of latent heat, which is why scientists think global warming is strengthening storms. Extra heat in the atmosphere or ocean nourishes storms. While we cannot pin point the extend of effect by climate change on recent strong hurricanes, it is certainly one of the key factors knowing that, according to UN’s Intergovernmental Panel on Climate Change, “Scientific evidence for warming of the climate system is unequivocal.”

GlobalTemp.png

When hurricane Harvey hit Houston, the fourth most populous city in the US, large areas of the city got flooded. Same thing happened in many cities in Florida and Caribbean Islands when hurricane Irma and Maria devastated cities there. I saw on TV that people were using pumps is some areas to drain the water from their property and streets. Apparently, it is a common practice in Miami even after a heavy rain.

We all believe that “prevention is better than cure.” The same thing is true with global warming and climate change and preventing the consequences of them including hurricanes and flooding. In general, by improving energy efficiency, we can reduce burning fossil fuels and thereby reduce greenhouse gasses (GHG) emissions which cause global warming and climate change. In this article, as an example, I focus on pumps and pumping systems and how their impact on climate change can be reduced.

In a series of reports we recently published on Energy Efficiency and GHG Emissions Reduction Potential in Industrial Motor Systems in the U.S. covering 30 U.S. States (Available from this Link), we estimated the energy use by industrial pump systems in 30 different states in the U.S., separately. Our analysis shows that industrial pump systems in Florida, Texas, and Louisiana, which were flooded by recent hurricanes, together consumed over 37,000 GWh of electricity in 2015. That is about the electricity use by 3.5 million U.S. households. Industrial pump systems in the entire U.S. consumed over 147,000 GWh in 2015, which accounts for about 20% of total electricity use in the U.S. manufacturing in that year. In other words, the electricity use by industrial pump systems in the U.S. is equal to electricity use by 13.5 million U.S. households. In terms of GHG emissions, industrial pump systems alone are responsible for over 163 Billion lb of carbon dioxide (CO2) emissions per year in the U.S.

In the same reports, we quantified energy saving and GHG emissions reduction potentials and cost-effectiveness of energy efficiency measures for industrial pump systems in each state studied including Florida, Texas, and Louisiana. Our analyses shows that up to 35% of the electricity use in the industrial pump systems can be saved by implementing commercially available energy efficiency and system optimization measures and technologies. Most importantly, over half of this energy saving potential is cost-effective. This means that to save a kWh of electricity will cost less than the average unit prices of electricity for industry in each of the 30 states studied. In other words, investing in energy efficiency in pump systems will result in millions of dollars in savings for companies, utilities, and tax payers. This will also result in creation of thousands of jobs for local communities in each state. In addition, the electricity savings will subsequently result in reduction in GHG emissions and other air pollutions from power plants. The combined GHG reduction potential from energy efficiency in industrial pump systems in Florida, Texas, and Louisiana is over 11 Billion lb of CO2 emissions per year.

These efficiency improvements will have absolutely no negative impact on production or services served by the pump systems. These are just commercially available system optimization measures which will result in both energy and cost savings as well as GHG emissions reduction.

Above, I just gave you an example of industrial pump systems. If you add other motor systems such as fan systems, compressor systems, etc. and also motor systems in other sectors (buildings, power sector, agriculture sector, etc.), the absolute energy saving, cost savings, and GHG emissions reductions will be up to 5 times higher than what was mentioned above for the industrial pump systems.

In addition to the industrial pump systems reports mentioned above, we have also published separate reports to quantify energy use, energy saving, and GHG emissions reduction potentials and cost-effectiveness of efficiency technologies and measures in industrial fan systems and industrial compressed air systems in 30 different states in the U.S. 

See Reports: U.S. Industrial Motor Systems Energy Efficiency Reports Covering 30 States >>

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.


Available Now: Reports on Electricity Saving Potentials in U.S. Industrial Motor Systems

demand response.jpg

In the U.S., industrial electric motor systems account for over 70% of manufacturing electricity consumption. Motors are used to drive pumps, fans, compressed air systems, material handling, processing systems and more. Industrial motor systems represent a largely untapped cost-effective source for industrial energy efficiency savings that could be realized with existing commercialized technologies. A major barrier to effective policy making for government and utilities in the U.S. related to energy efficiency improvement in industrial motor systems is the lack of information and data on the magnitude and cost-effectiveness of these energy savings potential in each state in the U.S. and a comprehensive strategy and roadmap.

Global Efficiency Intelligence, LLC has been working on an initiative to study and analyze the industrial motor systems in different states in the United States. We have 30 States from different regions in the U.S. that are included in this initiative. All top 20 U.S. states in terms of industrial energy consumption are included in this initiative. We work with various public and private stakeholders on this project. This initiative focuses on industrial pumps, fans, and compressed air systems which together account for over 80% of electricity use in industrial motor systems in the U.S. We conduct various analyses at the state-level such as analyzing the energy use by each motor system type and system size at manufacturing subsector level (e.g. chemical, food, textile, steel, machinery, pulp and paper, etc.), analyzing energy saving potentials and cost by technology and system size for each state, analyzing barriers and drivers to energy efficiency and system optimization in industrial motor systems in each state, and analyzing policy making and market implications for each state.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Infographic: The Profile of Energy Use in Industrial Motor Systems

According to International Energy Agency, around half of the electricity used globally is consumed in electric motor systems. Industrial motor systems account for around 70% of manufacturing electricity consumption in different countries. The inforgraphic below is prepared by Global Efficiency Intelligence, LLC to summarize some key information on energy use in motor systems worldwide.

Global Efficiency Intelligence, LLC is working on Global Motor Systems Efficiency Initiative and the U.S. Motor Systems Efficiency Initiative (covers 30 states in the U.S.) to analyze the energy use in industrial motor systems and energy efficiency potentials in these systems at manufacturing subsectors level in different countries or states in the U.S. For more information, click on the links above to see our projects page.

Available Now: U.S. Industrial Motor Systems Energy Efficiency Reports >>

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.