18 Emerging Technologies and 180 Commercialized Technologies and Measures for Energy and Water Efficiency, and GHG Emissions Reduction in the Textile Industry

The textile industry uses large amounts of electricity, fuel, and water, with corresponding greenhouse gas emissions (GHGs) and contaminated effluent.  With regard to energy use, the textile industry’s share of fuel and electricity use within the total final energy use of any one country depends on the structure of the textile industry in that country. For instance, electricity is the dominant energy source for yarn spinning whereas fuels are the major energy source for textile wet processing.

In addition to using substantial energy, textile manufacturing uses a large amount of water, particularly for wet processing of materials, and produces a significant volume of contaminated effluent. Conserving water and mitigating water pollution will also be part of the industry’s strategy to make its production processes more environmentally friendly, particularly in parts of the world where water is scarce.

In 2016, the world’s population was 7.4 billion; this number is expected to grow to 9.5 billion by 2050. The bulk of this growth will take place in underdeveloped and developing countries. As the economy in these countries improves, residents will have more purchasing power; as a result, per-capita consumption of goods, including textiles, will increase. In short, future population and economic growth will stimulate rapid increases in textile production and consumption, which, in turn, will drive significant increases in the textile industry’s absolute energy use, water use, and carbon dioxide (CO2) and other environmentally harmful emissions.

Having the higher education background in both textile technology engineering and energy efficiency technologies, I wrote a report on commercially available energy-efficiency technologies and measures for the textile industry several years ago. This report included a review of over 180 commercialized energy efficiency technologies and measures for the textile industry based on case-studies around the world. In addition to conserving energy, some of the technologies and measures presented also conserve water. The report can be downloaded from this Link (Hasanbeigi 2010).

Several other reports also document the application of commercialized technologies. However, today, given the projected continuing increase in absolute textile production, future reductions (e.g., by 2030 or 2050) in absolute energy use and CO2 emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for textile production or technologies that can economically capture and store the industry’s CO2 emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the textile industry’s mid- and long-term climate change mitigation strategies.

However, information is scarce and scattered regarding emerging or advanced energy-efficiency and low-carbon technologies for the textile industry that have not yet been commercialized. That was why a few years ago, I wrote another report that consolidated available information on 18 emerging technologies for the textile industry with the goal of giving engineers, researchers, investors, textile companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic. Table below shows the list of the technologies covered.

Table. Emerging energy-efficiency, water efficiency, and GHG emissions reduction technologies for the textile industry (Hasanbeigi 2013)

A few years ago when I conducted several day-long training on energy efficiency in the textile industry for hundreds of engineers and manager of textile companies in China, one major feedback we received, which did not surprise me, was that they did not know about most of the commercialized and emerging technologies we introduced. Engineers and manager are busy with day-to-day routine which rarely involves energy efficiency improvement.  

This report is published on LBNL’s website and can be downloaded from this Link (Hasanbeigi 2013). Please feel free to contact me if you have any question.

Also, you can check out the Energy Efficiency Assessment and Greenhouse Gas Emission Reduction Tool for the Textile Industry (EAGER Textile), which we developed a few years ago. EAGER Textile tool allows users to conduct a simple techno-economic analysis to evaluate the impact of selected energy efficiency measures in a textile plant by choosing the measures that they would likely introduce in a facility, or would like to evaluate for potential use.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

1.     Hasanbeigi, Ali; Price, Lynn; (2015). A Technical Review of Emerging Technologies for Energy and Water Efficiency and Pollution Reduction in the Textile Industry. Journal of Cleaner Production. DOI 10.1016/j.jclepro.2015.02.079.

2.     Hasanbeigi, Ali; Hasanabadi, Abdollah; Abdolrazaghi, Mohamad, (2012). Energy Intensity Analysis for Five Major Sub-Sectors of the Textile Industry. Journal of Cleaner Production 23 (2012) 186-194

3.     Hasanbeigi, Ali; Price, Lynn (2012). A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry. Renewable and Sustainable Energy Reviews 16 (2012) 3648– 3665.

References:

·      Hasanbeigi, Ali (2013). Emerging Technologies for an Energy-Efficient, Water-Efficient, and Low-Pollution Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-6510E

·      Hasanbeigi, Ali, (2010). Energy Efficiency Improvement Opportunities for the Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-3970E