Fuel saving

Energy Efficiency in California's Chemical Industry

petrochemical-plant-960296_1280.jpg

The chemical and petrochemical industry is the largest consumer of energy among industrial sectors in California and is one of the top GHG emissions-intensive industries as well. California's chemical industry employs over 80,000 people and its total value of shipment is around US$82 billion. In 2015, this industry emitted 6.0 million tonne of CO2 in California.

Global efficiency Intelligence, LLC has partnered with Lawrence Berkeley National Laboratory to conducted a study for California Energy Commission on energy efficiency in the Chemical industry in the state. The goal of this project is to produce a technical assessment of the chemical industry that will provide a clear understanding of R&D needs to improve the energy efficiency in the chemical industry in California and potential energy saving by adoption of current best available technologies.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our latest blog posts, projects, and publications.

Also read our related blog post:

Infographic: Chemical Industry’s Energy Use and Emissions

Report Release- California’s Cement Industry: Failing the Climate Challenge

Cement production is one of the most energy-intensive and highest carbon dioxide (CO2) emitting manufacturing processes in the world: On its own, the cement industry accounts for more than 5 percent of global anthropogenic CO2 emissions.

California is the second-largest cement producing state in the United States after Texas. California’s nine cement plants together produced about 10 million metric tonnes (Mt) of cement and emitted 7.9 Mt of GHG emissions in 2015. California’s cement factories are the largest consumers of coal in the state.

Global Efficiency Intelligence, LLC conducted a study supported by the Sierra Club and ClimateWorks Foundation to analyze the current status of cement and concrete production in California, and benchmarks the energy use and GHG emissions of the state’s cement industry in comparison to other key cement-producing countries.

The result of our benchmarking analysis shows that California’s cement industry has the second highest electricity intensity and fuel intensity among 14 countries/regions studied.

To read the full report and see the complete results and analysis, download the report from this link.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Infographic: Energy Use and Emissions in the Cement Industry

The cement industry is one of the most energy-intensive and highest CO2 emitting industries and one of the key industrial contributors to air pollutions (PM, SO­2, etc.) in the world. The inforgraphic below is prepared by Global Efficiency Intelligence, LLC to summarize some key information on energy use and emissions in the cement industry.

Global Efficiency Intelligence, LLC has experience conducting various projects and studies on energy efficiency, GHG and other emissions reduction, energy benchmarking, and alternative fuel use in the cement industry in China, India, U.S., Southeast Asia, and the Middle East.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.


Some of our related publications are:

  • Hasanbeigi, Ali; Nina Khanna, Price, Lynn (2017). Air Pollutant Emissions Projection for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies. Berkeley, CA: Lawrence Berkeley National Laboratory. 1007268

  • Hasanbeigi, Ali; Agnes Lobscheid; Hongyou, Lu; Price, Lynn; Yue Dai (2013). Quantifying the Co-benefits of Energy-Efficiency Programs: A Case-study for the Cement Industry in Shandong Province, China. Science of the Total Environment. Volumes 458–460, 1 August 2013, Pages 624-636.

  • Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang. 2013. Energy Efficiency Improvement Opportunities in the Cement Industry in China. Energy Policy Volume 57, June 2013, Pages 287–297

  • Hasanbeigi, Ali; Price, Lynn; Lin, Elina. (2012). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for Cement and Concrete  Production. Berkeley, CA: Lawrence Berkeley National Laboratory LBNL-5434E.

  • Morrow, William; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang. 2014. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India’s Cement and Iron & Steel Industries. Journal of Cleaner Production. Volume 65, 15 February 2014, Pages 131–141

  • Hasanbeigi, Ali; Menke, Christoph; Therdyothin, Apichit (2010). Technical and Cost Assessment of Energy Efficiency Improvement and Greenhouse Gas Emissions Reduction Potentials in Thai Cement Industry. Energy Efficiency. DOI 10.1007/s12053-010-9079-1

  • Hasanbeigi, Ali; Menke, Christoph; Therdyothin, Apichit (2010). The Use of Conservation Supply Curves in Energy Policy and Economic Analysis: the Case Study of Thai Cement Industry. Energy Policy 38 (2010) 392–405

  • Hasanbeigi, Ali; Price, Lynn; Hongyou, Lu; Lan, Wang (2010). Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China: A Case-Study of Sixteen Cement Plants. Energy-the International Journal 35 (2010) 3461-3473.