steel industry

Is Trump's Steel Trade War Good for the Climate?

steel-mill-616526_1280.jpg

President Trump just suggested to impose a 25% tariff on steel imports. While there are mix reactions to this announcement and many say it can lead to a trade war, I thought to look at it from climate change point of view. Is a U.S. tariff on steel imports good for the climate? The answer is it depends on where we are importing steel from. I will discuss this in more details below. According to USGS, U.S. imported around 36 million ton of steel in 2017, which equals to about 43% of total steel production in the U.S. that year.

Iron and steel production is an energy and carbon dioxide (CO2) intensive manufacturing process. Two types of steel production dominate the industry: blast furnace/basic oxygen furnace (BF/BOF) and electric arc furnace (EAF) production. BF/BOF production uses iron ore to produce steel. The reduction of iron ore to iron in a BF is the most energy-intensive process within the steel industry. EAF production re-melts mainly scrap to produce steel. BF/BOF production is more energy intensive and emits more GHG than EAF production.

A few years ago, when I was working at Lawrence Berkeley National Laboratory, I led a study to compare the CO2 intensity of steel production in four major steel producing countries: China, Germany, Mexico, and the U.S. We defined a similar boundary for the steel industry in these countries and adjusted the CO2 intensity based on net import of fuel and intermediary products (e.g. net imported pig iron, direct-reduced iron (DRI), pellets, lime, oxygen, ingots, blooms, billets, and slabs). The result of our study is presented in the graph below. More results and scenario analysis can be found in the report we published (see link at the bottom). Our analysis used 2010 data because that was the latest year for which the data were available for all four countries at the time of the study.

Figure. CO2 intensity of the iron and steel industry in China, Germany, Mexico, and the U.S. in 2010 (Hasanbeigi et al. 2016)

Figure. CO2 intensity of the iron and steel industry in China, Germany, Mexico, and the U.S. in 2010 (Hasanbeigi et al. 2016)

As can be seen from the Figure above, China has the highest and Mexico has the lowest total steel industry CO2 intensity. The total CO2 intensity of the Chinese steel industry is almost twice that of the Mexican steel industry. Two main reasons for low total CO2 intensity in Mexico’s steel industry are: a) Mexico has the largest share of EAF steel production among the four countries studied (69% in 2010), and b) Mexico’s steel industry consumes a larger share of natural gas compared to that in other countries studied. This results in a lower average emissions factor for fuels in Mexico. Another interesting point to note is that the total CO2 intensity of the German steel industry is 2% lower than that of the U.S. which is remarkable given that, in 2010, Germany had a lower share of EAF steel production (30% of total production) than the U.S. (61% of total production). However, it should be noted that the U.S. steel industry would have had lower CO2 intensity if we had not adjusted for net import of intermediary products to the steel industry, but that would have not been an accurate comparison. 

Our analysis also showed that the CO2 intensity of BF/BOF steel production alone in the U.S. is significantly higher than that in other three countries. This could be because of various reasons such as older BF/BOF plants and lower penetration of some major energy efficiency technologies such as coke dry quenching (CDQ) and top-pressure recovery turbine (TRT) in blast furnaces, etc.

Some of the key factors influencing the CO2 intensities of the steel industry are: share of EAF from total steel production, the age of steel manufacturing facilities in each country, the level of penetration of energy-efficient technologies, the scale of production equipment, the fuel shares in the iron and steel industry, the steel product mix in each country, the CO2 emissions factor of electricity grid, etc.

Figure below shows the Top 10 countries from which U.S. imported steel in 2014.

fig 2.png

Even though our aforementioned study did not include all the countries from which U.S. imports steel, many of them are known for having low energy and carbon intensive steel industry and/or having high EAF steel production share, which helps to reduce the CO2 intensity of their entire steel industry. Figure below shows the share of EAF steel production (one of the key factors influencing overall CO2 intensity of the steel industry in a country) in top 10 counties from which U.S. imports steel.

fig 3.png

It worth mentioning that U.S. also exported around 11 million ton of steel in 2017, around 90% of which went to Canada and Mexico. In fact, even though Canada and Mexico are among top countries from which U.S. imports steel, U.S. export more steel to Canada and Mexico than imports from them. Therefore, imposing steel import tariffs for these two countries does not seem to be effective.

To sum up, the U.S. tariff on steel imports can be good for the climate if it is based on carbon footprint of the steel imported and not just a blanket tariff. In fact, state of California recently passed a Buy Clean regulation, which calls for the state to create rules for the procurement of infrastructure materials (including steel) purchased with state funds that take into account pollution levels during production. It was one of the rare cases where both environmentalist and industry advocates agreed and backed the regulation. This could be an example of environmental- and climate-friendly procurement and trade tariffs that can benefit both industry and the environment and incentivize high polluting companies that are out-of-state or-country to clean up their production in order to be able to trade with these states or countries.

Needless to say, an import tariff on steel could result in a major trade war that will include other industrial sectors and products.

More details of our steel industry CO2 intensity comparison analysis and results are presented in the report that is published on LBNL’s website and can be downloaded from this Link.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Also read our related blog posts:

Some of our related publications are:

  • Hasanbeigi, Ali; Arens, Marlene; Rojas-Cardenas, Jose; Price, Lynn; Triolo, Ryan. (2016). Comparison of Carbon Dioxide Emissions Intensity of Steel Industry in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling. Volume 113, October 2016, Pages 127–139
  • Zhang, Qi; Hasanbeigi, Ali; Price, Lynn; Lu, Hongyou; Arens, Marlen (2016).  A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL- 1006356
  • Morrow, William; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang. 2014. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India’s Cement and Iron & Steel Industries. Journal of Cleaner Production. Volume 65, 15 February 2014, Pages 131–141
  • Hasanbeigi, Ali; Price, Lynn, Aden, Nathaniel; Zhang Chunxia; Li Xiuping; Shangguan Fangqin. 2014. Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Journal of Cleaner Production, Volume 65, 15 February 2014, Pages 108–119
  • Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang. (2013). A Bottom-Up Model to Estimate the Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Chinese Iron and Steel Industry. Energy, Volume 50, 1 February 2013, Pages 315-325
  • Hasanbeigi, Ali; Arens, Marlene; Price, Lynn; (2013). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Iron and Steel Industry. Berkeley, CA: Lawrence Berkeley National Laboratory BNL-6106E.

References

  • Hasanbeigi, Ali; Arens, Marlene; Rojas-Cardenas, Jose; Price, Lynn; Triolo, Ryan. (2015). Comparison of Energy-Related Carbon Dioxide Emissions Intensity of the International Iron and Steel Industry: Case Studies from China, Germany, Mexico, and the United States
  • Hasanbeigi, Ali; Arens, Marlene; Rojas-Cardenas, Jose; Price, Lynn; Triolo, Ryan. (2016). Comparison of Carbon Dioxide Emissions Intensity of Steel Industry in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling. Volume 113, October 2016, Pages 127–139
  • USGS, 2018 and 2014. Iron and Steel
  • Buy Clean California. http://buycleancalifornia.org

The Impact of Emissions Control Technologies on Emissions from the Cement and Steel Industry in China up to 2050

smoke-258786_1280.jpg

Production of iron and steel is an energy-intensive and air polluting manufacturing process. In 2014, the iron and steel industry accounted for around 28 percent of primary energy consumption of Chinese manufacturing (NBS 2015a). Steel production in 2015 was 804 Mt (worldsteel, 2016), representing 49.5% of the world production that year (Figure 1).

Figure 1. China’s Crude Steel Production and Share of Global Production (1990-2015) (EBCISIY, various years; NBS, 2015b, worldsteel 2016)

Figure 1. China’s Crude Steel Production and Share of Global Production (1990-2015) (EBCISIY, various years; NBS, 2015b, worldsteel 2016)

Chinese steel industry contributed to about 20% of SO2 emissions, and 27% of dust and PM emissions for all key manufacturing industry in China in 2013 (Wang et al. 2016).

China also produces over half of the world’s cement with 2,360 million Mt produced in China in 2015 (NBS 2015b). Two types of kilns are used in China to produce clinker, which is the key ingredient in cement: vertical shaft kilns and rotary kilns. Vertical shaft kilns are outdated technologies that use significantly more energy to produce a ton of clinker than rotary kilns do. The cement production from rotary kilns grew rapidly in recent years, from 116 Mt in 2000 to 1,494 Mt in 2010 (Figure 2).

Note: 2011 – 2015 production shares are based on our model projections  Figure 2. Cement production in China by kiln type, 1990-2015 (ITIBMIC 2004, MIIT 2011, NBS 2015b)

Note: 2011 – 2015 production shares are based on our model projections

Figure 2. Cement production in China by kiln type, 1990-2015 (ITIBMIC 2004, MIIT 2011, NBS 2015b)

Consistent with the Chinese cement industry’s large production volume, total CO2 emissions from the industry are very high, as are associated air pollutant emissions, including sulfur dioxide (SO2), nitrogen oxides (NOX), carbon monoxide (CO), and particulate matter (PM). These emissions cause significant regional and global environmental problems. The cement industry is the largest source of PM emissions in China, accounting for 40 percent of PM emissions from all industrial sources and 27 percent of total national PM emissions (Lei et al. 2011).

 

In addition to setting emissions standard and adoption of end-of-pipe emissions control technologies, Chinese government policies also focus on reducing energy use, which, in turn, helps to reduce greenhouse gas (GHG) emissions. Other important co-benefits of energy-efficiency policies and programs are reduced harm to human health through reduction in air pollutant emissions, reduced corrosion, and reduction in crop losses caused by surface ozone and regional haze.

In early 2017, my colleagues at Lawrence Berkeley National Laboratory and I published a study in which we analyzed and projected the total particulate matter (PM) and sulfur dioxide (SO2) emissions from the Chinese cement and steel industry during 2010-2050 under three different scenarios. We used the bottom-up emissions control technologies data to make the emissions projections. The three distinct scenarios developed were as follow:

  1. Base Case Scenario: a baseline scenario that assumes that only policies in place in 2010 continue to have effect, and autonomous technological improvement (including efficiency improvement and fuel switching) occurs. The end-of-pipe emissions control technologies shares and penetration remain at 2010 level through the study period up to 2050.
  2. Advanced scenario: China meets its energy needs and improves its energy security and environmental quality by deploying the maximum feasible share of currently cost-effective energy efficiency and renewable supply technologies by 2050. The end-of-pipe emissions control technologies share and penetration remain at 2010 level through the study period up to 2050.
  3. Advanced scenario with Improved End-of-Pipe (EOP) Emissions Control (Advanced EOP): Similar to Advanced scenario explained above with the only difference being the end-of-pipe emissions control technologies share and penetration rate improves through the study period up to 2050.

In all three scenarios, only technologies that are commercialized or piloted at scale are considered. Following figures show the result of our analyses.

Figure 3. Total PM emissions of Chinese cement industry under different scenarios during 2010-2050

Figure 3. Total PM emissions of Chinese cement industry under different scenarios during 2010-2050

Figure 4. Total SO2 emissions of Chinese cement industry under different scenarios during 2010-2050

Figure 4. Total SO2 emissions of Chinese cement industry under different scenarios during 2010-2050

Figure 5. Total PM emissions of Chinese steel industry under different scenarios during 2010-2050

Figure 5. Total PM emissions of Chinese steel industry under different scenarios during 2010-2050

Figure 6. Total SO2 emissions of Chinese steel industry under different scenarios during 2010-2050

Figure 6. Total SO2 emissions of Chinese steel industry under different scenarios during 2010-2050

More details of the methodology used and results can be found in our report which is published on LBNL’s website and can be downloaded from this Link. Please feel free to contact me if you have any question.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

  1. Hasanbeigi, Ali; Arens, Marlene; Rojas-Cardenas, Jose; Price, Lynn; Triolo, Ryan. (2016). Comparison of Carbon Dioxide Emissions Intensity of Steel Industry in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling. Volume 113, October 2016, Pages 127–139
  2. Zhang, Qi; Hasanbeigi, Ali; Price, Lynn; Lu, Hongyou; Arens, Marlen (2016).  A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL- 1006356
  3. Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang. (2013). A Bottom-Up Model to Estimate the Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Chinese Iron and Steel Industry. Energy, Volume 50, 1 February 2013, Pages 315-325
  4. Hasanbeigi, Ali; Arens, Marlene; Price, Lynn; (2013). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Iron and Steel Industry. Berkeley, CA: Lawrence Berkeley National Laboratory BNL-6106E.
  5. Hasanbeigi, Ali; Agnes Lobscheid; Yue Dai; Price, Hongyou, Lynn; Lu (2012). Quantifying the Co-benefits of Energy-Efficiency Programs: A Case-study for the Cement Industry in Shandong Province, China Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-5949E.
  6. Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang. (2012). Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-5536E
  7. Hasanbeigi, Ali; Price, Lynn; Lin, Elina. (2012). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for Cement and ConcreteProduction. Berkeley, CA: Lawrence Berkeley National Laboratory LBNL-5434E.
  8. Hasanbeigi, Ali; Price, Lynn; Hongyou, Lu; Lan, Wang (2009). Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China. Energy 35 (2010) 3461-3473 

 

References

  • Hasanbeigi, Ali; Nina Khanna, Price, Lynn (2017). Air Pollutant Emissions Projection for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies. Berkeley, CA: Lawrence Berkeley National Laboratory.
  • Editorial Board of China Iron and Steel Industry Yearbook (EBCISIY). Various years. China Iron and Steel Industry Yearbook. Beijing, China (in Chinese).
  • Institute of Technical Information for Building Materials Industry (ITIBMIC). 2004. “Final Report on Cement Survey.” Prepared for the United Nations Industrial Development Organization (UNIDO) for the Contract Entitled Cement Sub-sector Survey for the Project Energy Conservation and GHG Emissions Reduction in Chinese TVEs-Phase II.
  • Lei,Y., Q. Zhang, C. Nielsen, K. He. 2011. “An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990-2020.” Atmospheric Environment 45:147-154.
  • Ministry of Industry and Information Technology (MIIT). 2011. Production of building materials industry in 2010 and rapid growth of output of major products.
  • NBS. 2015a. China Energy Statistics Yearbook 2015. Beijing: China Statistics Press.
  • NBS. 2015b. China Statistical Yearbook 2015. Beijing: China Statistics Press.
  • Wang, K., Tian, H., Hua, S., Zhu, C., Gao, J., Xue, Y., Hao, J., Wang, Y., Zhou, J. 2016. A comprehensive emissions inventory ofmultiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Science of the Total Environment 559 (2016) 7–14.
  • World Steel Association (worldsteel). 2016. Steel Statistical Yearbook 2016.