Global Warming

3 Key Manufacturing Sectors to Target for Reaching Paris Agreement's Goal

global-warming-2034896_1280.jpg

According to IPCC, the industry sector accounts for about a quarter of the world’s total anthropogenic greenhouse gas (GHG) emissions (after allocating electricity-related emission to end use sectors). This is by far greater than GHG emissions from the Building and Transportation sector, yet these two sectors often get more attention than the industry sector.

AFOLU: Agriculture, Forestry and Other Land Use Figure 1. The share of GHG emissions by economic sector (IPCC 2014)

AFOLU: Agriculture, Forestry and Other Land Use
Figure 1. The share of GHG emissions by economic sector (IPCC 2014)

Unlike building and transportation sector, the manufacturing sector is more complex which involves tens of industry subsectors that are vastly different from each other with regards to the production technologies and systems they use. It looks like this complexity drives many people and organizations away from the industry sector. However, without seriously tackling the energy use and GHG emissions in the industry sector, we will absolutely fail to meet the goals of Paris Climate Agreement.

Within the industry sector, there are many industry subsectors. Figure 2 below shows a high-level classification of industry subsector. Among these, there are only 3 industry subsectors that account for over 62% of total final energy use in industry sector worldwide. These three sectors are:

  1. Iron and steel industry
  2. Chemical and petrochemical industry
  3. Non-metallic minerals industry, which is mainly the cement industry, but also includes glass, lime and other smaller subsectors

In terms of GHG emissions, these three manufacturing subsectors, i.e. iron and steel industry, chemical and petrochemical industry, and cement industry account for even larger share, over 65% of total industry sector GHG emissions. This is because of high levels of non-energy related GHG emissions (or process emissions) from these three subsectors particularly the cement industry. Worldwide, around 63% of total GHG emissions from the cement industry is process-related emissions (from chemical reaction during calcination process), which are not included in the Figure 2 below.

Figure 2. The share of different industry subsector from total industry use in the world in 2014 (IEA 2017a)

Figure 2. The share of different industry subsector from total industry use in the world in 2014 (IEA 2017a)

What makes the matter worse is the high share of fossil fuels, especially coal used in the industry sector. Coal accounts for over 75% of the final energy used in the steel industry worldwide with another 10% of energy coming from natural gas and oil (IEA 2017a). In the cement industry worldwide, coal account for over 60% final energy use and natural gas and oil account for another 15% of total energy use (IEA 2018).

The other point to keep in mind is that with world’s population increasing from 7.6 billion in 2018 to around 10 billion people in 2050 with majority of population increase to happen in developing economies, the absolute demand for cement, steel, and chemicals is expected to increase significantly by 2050.

While many people are hoping that we will clean the electricity grid and then electrify almost everything, thereby addressing the climate change issue, this is far more complex in manufacturing sector compared with the building and transportation sector. First, as mentioned above, industry sector with many subsectors which are quite different technologically will need many different types of electrification technologies. Second, around 74% of the final energy used in industry sector is fuel from which almost 48% is used for high temperature heat (above 400 Degrees Celsius) most of which is used in the steel and cement industry among others (Figure 3).  Electrifying this high temperature heat demand has proved to be difficult in these 3 industry subsectors.

Figure 3. Share of energy use by economic sector (left) and breakdown of heat demand in industry (right) (IEA 2017b)

Figure 3. Share of energy use by economic sector (left) and breakdown of heat demand in industry (right) (IEA 2017b)

In summary, without decarbonizing the iron and steel, chemical and petrochemical, and cement industry, it is impossible to reach the Paris Climate Agreement’s goals and peak the total GHG emissions early enough to keep the temperature rise below 2 degrees Celsius. Therefore, we need more focused attention by public and private sectors as well as NGOs and philanthropists to gather and allocate resources to reduce GHG emissions in these 3 industry subsectors. The time is running out with regards to climate change mitigation timeline and peaking world’s GHG emissions. We need to focus on areas where we can get huge savings and gigaton scale GHG emissions reduction.  If we don’t, scientists have given us some clear dire warnings!

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Also read our related blog posts:

See the list of some of our related publications for the iron and steel, cement, and chemical industry from this link.

Sources:
IEA/WBCSD. 2018. Technology Roadmap-Low-Carbon Transition in the Cement Industry.
IEA. 2017a. Global Iron & Steel Technology Roadmap.
IEA. 2017b. Renewable Energy for Industry.
IPCC. 2014: Summary for Policymakers. In: Climate Change 2014: Mitigation of Climate Change.

 


Hurricanes Maria, Irma, Harvey: How to Keep out the Flood Water by Pumping Less

storm-407963_1280.jpg

First, I should say that my heart goes to all people who are affected by Hurricane Maria, Hurricane Irma, and Hurricane Harvey in Texas, Louisiana, Florida, Puerto Rico, and all islands in the Caribbean. At times like this, we shall all come together to help the people in need.

 

Whether or not we like it or believe in it, climate change is causing global warming. That in term is causing an increase in severe weather and natural disasters. We are all witnessing the worst in a century hurricanes, tropical storms, flooding, and droughts all over the world. This is not a coincident. Scientists have been yelling and warning us about this for years now. It’s time to listen and act before it is too late. According to NASA, storms feed off of latent heat, which is why scientists think global warming is strengthening storms. Extra heat in the atmosphere or ocean nourishes storms. While we cannot pin point the extend of effect by climate change on recent strong hurricanes, it is certainly one of the key factors knowing that, according to UN’s Intergovernmental Panel on Climate Change, “Scientific evidence for warming of the climate system is unequivocal.”

GlobalTemp.png

When hurricane Harvey hit Houston, the fourth most populous city in the US, large areas of the city got flooded. Same thing happened in many cities in Florida and Caribbean Islands when hurricane Irma and Maria devastated cities there. I saw on TV that people were using pumps is some areas to drain the water from their property and streets. Apparently, it is a common practice in Miami even after a heavy rain.

We all believe that “prevention is better than cure.” The same thing is true with global warming and climate change and preventing the consequences of them including hurricanes and flooding. In general, by improving energy efficiency, we can reduce burning fossil fuels and thereby reduce greenhouse gasses (GHG) emissions which cause global warming and climate change. In this article, as an example, I focus on pumps and pumping systems and how their impact on climate change can be reduced.

In a series of reports we recently published on Energy Efficiency and GHG Emissions Reduction Potential in Industrial Motor Systems in the U.S. covering 30 U.S. States (Available from this Link), we estimated the energy use by industrial pump systems in 30 different states in the U.S., separately. Our analysis shows that industrial pump systems in Florida, Texas, and Louisiana, which were flooded by recent hurricanes, together consumed over 37,000 GWh of electricity in 2015. That is about the electricity use by 3.5 million U.S. households. Industrial pump systems in the entire U.S. consumed over 147,000 GWh in 2015, which accounts for about 20% of total electricity use in the U.S. manufacturing in that year. In other words, the electricity use by industrial pump systems in the U.S. is equal to electricity use by 13.5 million U.S. households. In terms of GHG emissions, industrial pump systems alone are responsible for over 163 Billion lb of carbon dioxide (CO2) emissions per year in the U.S.

In the same reports, we quantified energy saving and GHG emissions reduction potentials and cost-effectiveness of energy efficiency measures for industrial pump systems in each state studied including Florida, Texas, and Louisiana. Our analyses shows that up to 35% of the electricity use in the industrial pump systems can be saved by implementing commercially available energy efficiency and system optimization measures and technologies. Most importantly, over half of this energy saving potential is cost-effective. This means that to save a kWh of electricity will cost less than the average unit prices of electricity for industry in each of the 30 states studied. In other words, investing in energy efficiency in pump systems will result in millions of dollars in savings for companies, utilities, and tax payers. This will also result in creation of thousands of jobs for local communities in each state. In addition, the electricity savings will subsequently result in reduction in GHG emissions and other air pollutions from power plants. The combined GHG reduction potential from energy efficiency in industrial pump systems in Florida, Texas, and Louisiana is over 11 Billion lb of CO2 emissions per year.

These efficiency improvements will have absolutely no negative impact on production or services served by the pump systems. These are just commercially available system optimization measures which will result in both energy and cost savings as well as GHG emissions reduction.

Above, I just gave you an example of industrial pump systems. If you add other motor systems such as fan systems, compressor systems, etc. and also motor systems in other sectors (buildings, power sector, agriculture sector, etc.), the absolute energy saving, cost savings, and GHG emissions reductions will be up to 5 times higher than what was mentioned above for the industrial pump systems.

In addition to the industrial pump systems reports mentioned above, we have also published separate reports to quantify energy use, energy saving, and GHG emissions reduction potentials and cost-effectiveness of efficiency technologies and measures in industrial fan systems and industrial compressed air systems in 30 different states in the U.S. 

See Reports: U.S. Industrial Motor Systems Energy Efficiency Reports Covering 30 States >>

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.