Energy Efficiency in Illinois, Indiana, Michigan, Ohio, and Wisconsin's Industrial Fan Systems

East North Central fan sys EE cost curve-Final.png
East North Central fan sys EE cost curve-Final.png

Energy Efficiency in Illinois, Indiana, Michigan, Ohio, and Wisconsin's Industrial Fan Systems

2,800.00

This report analyzes energy efficiency and GHG reduction potentials and their cost-effectiveness in industrial fan systems in Illinois, Indiana, Michigan, Ohio, and Wisconsin, separately.

Add To Cart

Pages: 73    |     Figures: 31    |       Tables: 23

File format: PDF

Publication date: September 2017

Research Director: Ali Hasanbeigi, Ph.D.

Global Efficiency Intelligence, LLC.

Report sample PDF preview

Notice: Once the order has been completed, the PDF file of the report(s) you purchased with a unique ID number will be delivered to the email you have provided, up to 3 business days after receipt of your payment.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new reports, projects, and news.

------------------------------------------------------------------------------------------------------------------

Industrial electric motors account for over 70% of electricity consumption in manufacturing in the U.S. Motors are used to drive pumps, fans, compressed air systems, material handling, processing systems and more. Industrial motor systems represent a largely untapped cost-effective source for energy savings that could be realized with existing commercialized technologies. Fan systems are widely used throughout manufacturing industries. In many industrial facilities, fans are among the highest electricity consuming equipment. Inefficiencies in fan systems are common.

One of the major barriers to effective policy making and increased action by states and utilities to improve energy efficiency in industrial fan systems is the lack of information and data on the magnitude and cost-effectiveness of the energy savings potential in industrial fan systems in each state. This lack of information creates an obstacle to developing a comprehensive and effective strategy, roadmap, and programs for improving fan systems efficiency cost-effectively. It is far easier to quantify the incremental energy savings of substituting an energy-efficient motor for a standard motor than it is to quantify the energy conservation of applying other energy efficiency and system optimization practices to an existing fan system. 

Global Efficiency Intelligence, LLC. conducted a large initiative to study industrial motor systems in 30 states from different U.S. regions. This includes the top 20 U.S. states in terms of industrial energy consumption. We focused on industrial pumps, fans, and compressed-air systems which together account for over 70% of electricity use in U.S. industrial motor systems.

This report by Global Efficiency Intelligence, LLC. focuses on analyzing energy use, energy efficiency, and CO2 emissions-reduction potential in industrial fan systems in selected East North Central U.S. states of Illinois, Indiana, Michigan, Ohio, and Wisconsin. We have also published similar reports for industrial pump systems and compressed air systems for these states.

Now that states have different programs to set targets, including passing legislation to enact formal energy efficiency resource standards, setting long-term energy savings targets through utility commissions tailored to each utility, or incorporating energy efficiency as an eligible resource in renewable portfolio standards (RPS), investment in energy efficiency in industrial fan systems to tap into the huge saving potentials quantified in this report can help utilities to meet their targets, reduce their greenhouse gas emissions, and thereby help with climate change mitigation.

In addition, energy efficiency in industrial motor systems stimulates economic growth and creates jobs in a variety of ways (direct, indirect, and induced jobs creation). Investment in energy efficiency creates more jobs per dollar invested than traditional energy supply investments. Energy efficiency in industrial motor systems also creates more jobs in the local economy, whereas energy supply jobs and investment dollars often flow outside the state.

Key analyses and results included:

  • Electricity use by manufacturing subsector (NAICS code 31-33) in each state studied
  • Electricity use for motor systems and fan systems by manufacturing subsector (NAICS code 31-33) in each state studied
  • Electricity use by industrial fan systems by size in each state studied
  • Market barriers to energy efficiency in industrial motor and fan systems
  • Energy Efficiency Cost Curves for industrial fan systems for each state using eight major energy efficiency measures
  • Energy saving potential and cost of conserved energy (US$/MWh-saved) for each efficiency measures in each state studied
  • The cost-effective and total technical energy efficiency potential in industrial fan systems in each state studied
  • Energy saving potential for each energy efficiency measure by system size
  • GHG emissions reduction potential for each efficiency measure in each state
  • Sensitivity of the results with respect to changes in electricity prices and discount rates
  • Implications for markets, utilities, and policy makers

------------------------------------------------------------------------------------------------------------------

Who should read this report?

  • Utilities
  • Government energy and environmental agencies
  • State regulators and policy makers
  • Energy Service Companies (ESCOs)
  • Demand Response (DR) service and technology providers